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Abstract We recently introduced a new geometric trilateration 1. INTRODUCTION
(GT) method for GPSstyle positioning. Preliminary single
point analysis using simplistic error assumptions indicatesthat As o f June 30, 2017, the Unit

the new scheme delivers almost indistinguishable localization System (GPS) infrastructure consisted of 31 operational
accuracy as the faditional Newton-Raphson (NR) approach.  satellites [1]. These satellites provide 24/7 global location
Also, the same computation procedure can be usedtoperform g nd t i mi n g services for user s
high-accuracy relative positioning between a reference vehicle Earth orbit (LEO). The cost of development and deployment

and an arbitrary number of target vehicles. This scheme has the of GPS is estimated to be about $33 billion. and the annual
potential to enable a) newmission concepts in collaborative operatioln andl maintenance co_:lt i abolutl $1' billion [2] Yl(Jet

science, b) imsitu navigation services for human Mars missions, . - B '
and C) lower cost and faster acquisition of GPS Signals for the economic benefItS Of GPS are tremendOUS, itis eStImated

consumergrade GPS products. that the monetary benefits of GR&he US economy in 2013
The new GT scheme differs from the NR schemas follows alone is about $56 billion [3].
1. The new scheme is derived from Pythagoras
Theorem, whereas the NR method is based on the In addition to economic benefits, GPS is changing the
principle of linear regression. everyday life of people in the areas of technology, culture,
2. The NR method uses the absolute locatiorfsi, yi, z2) 9  and thinking. There is no end in sight as to how GPS can be
of the GPS satellites as input to each step of the integrated with dter technologies, and its infusion
localization computation. The GT method uses the revolutionizes and enables many commercial, space, and

Directional CosinesUid 6 r om Eart hdés ¢ enﬂilfta?yrapﬁli(%tioh§a?1d services.
GPS satelliteS.

3. Both the NR method and the GT method iterate to GPS provides 8Blimensional (3D) position estimates via
converge to a localized solutionIn each iteration P P

step, multiple matrix operations are performed. The  (rilateration, which refers to the general technique of
NR method constructs a different matrix in each computing posibn based on measurement of distances. The
iterative step, thus requires performing a new set of standard GPS ftrilateration scheme is expressed in terms of
matrix operations in each step. The GT scheme uses distance measurements and positions in an Earkered

the same matrix in each itergion, thus requiring Cartesian coordinate system. The set of simultaneous
computing the matrix operations only once for all equations is of the form
subsequent iterations.

@)

In this paper, we perform an in-depth comparison between the & o o « »

GT scheme and the NR method in terms of a) GPS localization where(x, y z‘)is the position of vehicl¥ to be estimatedx:
accuracy in the GPS operation environrent, b) its sensitivity ) '

, . Vi, z) are known positions of the GPS satelligg, andn is
with respect to systematic errors and random errors, and c) . . .
computation load required to converge to a localization solution.  the number of satellitesDt is the clock bias betweénand
the GPS time standard, which is maintained by the GPS

TABLE OF CONTENTS operation segment.c is the speed of lightin the GPS
trilateration computation(x, y, z)and cDfcan be solved
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2. REVIEW OF NEWTON-RAPHSON (NR) SCHEME of equations in (1) is known as the New#aphson method,
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that the new scheme delivers almost indistinguishable e Dx ¢ \

localization accuracy as the traditional Newf®aphson é C 9‘

(NR) approach. Also, the same computation procedure can AP' = é Dy C \ o 3

be used to perform highccuracy relative positioning Where T é Dz C andd é forns 4.
between a reference vehicle and an arbitrary number of target é C &

vehicles [5]. This scheme has the potential to enable a) new é D¢

mission concepts in collaborative science, b}sito
navigation services farationalhuman Mars missions, and €) The matrix G is of the form
lower cost and faster acquisition of GPS signals for
consumeigrade GPS products.
The new GT scheme differs from the NR scheme in the - . _
following ways: 1 o a a i
1. The new scheme is derived from Pythagoras mw 0w W a qg o
Theorem, whereas the NR method is based on the 0o & q q i
principle of linear regression. ' & & & 5"
2. The NR method uses the absolute locatiensy, h N o2 d .
. . ; 9 O 0w 0wa W
z) Gokthe GPS satellites as input to each step of - - - o
the localization computatioriThe GT method uses u a a a U
the Directional Cosinedi6 6§ r om Eart hdés center to
the GPS satelliteS.
3. Both the NR method and the GT method iterate to The estimated locatiof, y,7) is then updated as¥, y, 7)
converge to a localized solution. In each iteration (@x . @y (¥, 7983.)Note that:

step, multiple matrix operations are performed. o . ,
1. The matrixG is constructed using the GPS satellite

e

n

The NR nethod constructs a different matrix in

each iterative step, thus requires performing a new
set of matrix operations in each step. The GT
scheme uses the same matrix in each iteration, and

locations(x, ¥, z) as well as the estimated location
(X,y,Z) of P for a given iteration.
The first three entries of roinin G correspond to

thus requires computing the matrix operations only the unit vector from the intermediate location

once for all subequent iterations. (X,y,Z) of each iterative step to the GPS satellite
S.

3. The estimated locatioQ, v, 7) is different in

each iterative step, thus the mat@xs different,
and the complicated computation(GfrG)-1Gr has
to be performed in each step.

The rest of the paper is organized as follows: Section 2
reviews the NR method and the GT scheme for trilateration.
Section 3 introduces a notional navigation satellite system
architecture forhuman Marsexploration missions The
detailed system concept is described in [6]. Usindntimean
Mars landing site scenario, we compare the accuracy
performances between the NR and the GT schemes in SectibRe details of this method can be found in many GPS books,
4, and the computation performances are compared in Sectigrg- [2].

5. Section 6provides concluding remarks and discusses

future work. 2.2ReEVIEw OF GEOMETRIC TRILATERATION

SCHEME

The Geometric Trilateration method iterates and provides

coverage to a localization solution based on altarga

applications of Pythagoras Theorem in its iteration process.

We formulated the problem as follows: LEtdenote the

2 1 REVIEW OFNEWTONRAPHSONSCHEME center of the planetary body with coordingt® 0, 0)

NewtonRaphsonés iterative met onsider three poirims! E,andS: that forrpatrian%Iesgl in e
P ~ the EllclidBah &ce ag Showh $h r]:i\éLFre 19 Sefbs ¢ ngé\"1

based on the approach ofdar regression. Let=(X,y,Z)  betweerE andS, andridbe the pseudeange measurements

be the estimated location for a given iteratibet there ben ~ betweerVandS. We consider the presence of the clock bias

satellites and letafixfB & pe the measured distances P between the vehiclg' and the GPS satellites6 s , 1 O i

between the satellites and the estimated locatidnresidual - W€ assume that the clocks the GPS satellites are
) — perfectly synchronized. We express the unknown clock bias
location AP = (opx ,

I b ‘F& 0 (rj] (]Palll D,esti ma t &fihe YdhiBid tith Pebpbct t&ilas &R unknown correction
= ¢ qatre computed by solving the following equation: factor D= coptin the pseudeange measurementst The

same correction factorrange occu
measurementso , 1 O i O n.

2. REVIEW OF NEWTON-RAPHSON (NR)
SCHEME AND GEOMETRIC TRILATERATION
(GT) SCHEME

AP' = (GIG)1Gr &
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The detailed derivation is derived in [5], and the computation
procedures are summarized in Figure 1.
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Fiaure 1. Iterative Procedure of theproposedGT Scheme

3 A NOTIONAL MARS NAVIGATION _ o o
SATELLITE SYSTEM ARCHITECTURE The orbllts of the Mars navigation nodes are s_hown in Figure
i . ) . 2 (3D view), and the projections of these orbits onto the
We consider the scenario afhuman Mars landing site at pars surface are shown in Figure 3@2iew). Note that
Utopia Planitia on Mars, and propose a navigation satellitg, Figyre 3, the Mars navigation nodes cluster together, and
constellation that provides navigation and timing services INtopia Planitias north of the cluster. The sateHieceiver
the surrounding region of the landing site. Toteposed  geometry appears to be weak and the geometric dilution of
navigation satellite constellation leverages ore #two  precision (GDOP) is high. In other words, the localization
conceptuahreostationary relay orbiters and the Deep Spacgp|ution can be very sensitive to the errors in theavge
Habitat Conceptin a circular 4&hour inclined orbit, and  measurementswe describe aystem concept that uses the
augmented it with anotional navigation satellite in an game trilateration scheme to perform both absolute
areosynchronous orbit that traces around a figysath. The positioning and relative positioning in [6], and we show the

]E:Ol?cemualMar s orbitersdo orbitadmyBidn résmsdn@detdiled@riofanaldis¥ing7] @S
ollows:

Aerostationary orbiter 1 (Areo45)162.5° due East
Aerostationary orbiter 2 (Are090)207.5° due East
Aerosynchronous orbiter (Areo68)80° due Easf0°
inclined

Deep Space Habitat (M&48hr):180° due East, 149.5°
inclined

Predecisional information for planning amliscussion only. 3



_-l""'-'—'h'h-,‘ Lt /

Figure 2. Orbits of the Notional Mars Navigation Nodeg3-D View)
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Figure 3. Orbits of the Notional Mars Navigation NodesZ-D View)

satellite navigation systems. For exampiavigation node
4. ACCURACY PERFORMANCE COMPARISON errors model imperfect knowledge in the transmitting

The traditional NewtoRaphson and new Geometric satellite locations and clock offsets. Receiver range

X X : . estimation errors model uncorrected environmental effects
Trilateration methods were compared using the Martian L ! .

o ; i . such as transmission medium delays, multipath reoeiver
navigation scenario that was presentedthe previous

: noise
section.

In this analysis, both navigation node errors and receivér@ch @vigation node has a true dl‘stard,e/vhlch 'S‘k”OW”
range estimatioerrors are considered. These errors serve a@ithin an error given b2~ 'Q 0 where eaclvy is an
proxies to model the most common error types in moderindependent normally distributed randeariable withmean
Predecisional information for planning aniiscussion only. 4



mand standard deviatiosy, i.e., OX O ‘h, . In =112.74 cm. This value is very close to the theoretically
ghredicted localization accuracy by thespimn dilution of
precision (PDOP) geometry figure of merit which is given by
the square root of the trace of the first three elements of the
geometry matrix product inversé3(G)-1. For the geometry
Q W U W U a v @) given in this problem, PDOP = 113.17, which pcéxla3D
0 pfE it localization error ofS 3p =113.17 cm in the simulated case

given byS, = 1.0 cm. This result agrees with the simulated
With result to within 0.4%. Finally it is noted that for navigation

0 ) 0 0 0 off fe node position errors as small 8 = 0.5 m, this effect
P . - .
3) dominateste overall error statistics such that all the entries
in each column of Table 1 are approximately the same
o _ regardless of the value of pseudmge measurement error.
Andeacth b b x 6 mh, ¥o . This result suggests that for the range of values studied, it is
more beneficial to mininzie the navigation node position
Each receiver pseugange measurement is assumed to haverror to improve the overall localization performance. In the
a statistically independent random measurement error due ¢gse given with navigation node er®y= 1 m and pseudo
receiver noise, with a normal standard deviaionthat is  range errois, = 5.0 cm, the 3D position localizati error
simulated at a specified value. In other words, eachdsse standard deviation iS z3p= 65.64 m. For the range of error

rangeestimationis given by: _ ) )
values considered in this stud$,sp performance scales

actualityv is the norm of a random vector perturbation in th
coordinates of transmission noge Vi, z):

i Q- ‘Q pfE fe 4 approximately linearly with navigation node error standard
deviations v.
With-x § mh, . The geometric trilateration (GT) algorithm described in

Section Il was compared to the traditional NR algorithm
A position solution was obtained using both algorithms forunder identicalerror conditions The results of the 3D
10,000 simulations of the Martian position described in theposition localization error for the GT algorithm are shown in
previous section with the statistig&lceiver noiserrors for  Table 2. For each case simulated with the NR algorithm in
pseuderange and each navigation node location. A range ofable 1, an identical siatation was performed using the
different err@ conditions is shown for pseudange same statistical sequences as measurement inputs to the GT
measurement err&, from 0 to 5.0 cm and navigatiorode ~ &lgorithm. In other words, the ensemble statistics of each cell
in Table 2 are identical to those used in the corresponding cell
in Table 1. This allows a fair compson of the two
algorithms and removes any effects that may be attributed to

. . . variations in the statistics between the two cases.
The results for the traditional NR algorithm are shown in

Table 1. It is instructive to consider the traditional NR
algorithm localzation error performance for several of the
cases that are listed in Table 1. In the upper left corner, it is
seen that when both the navigation node error and the pseudo
range error are zero, the algorithm determines the correct
position as expected. Ihé leftmost column of the Table 1,

when the pseudmnge position error is given I9y-= 1.0 cm,
the standard deviation dhe 3D localization error i$ zp

position errorS y from Om to 35m. A receiver clock offset
of gpt= 10 microseconds was included in every simulation.

Table 1. o5 Localization Error standard deviation (cm) of the Traditional NR Scheme. PDOP=113.17.

Traditional NR Navigation Node Error, G,
Algorithm Om 0.5m 1m 2m 5m 10 m 30m 35m
O0cm 0.00 3273.85 | 6547.69 | 13095.39 | 32738.48 | 65476.99 | 196431.3 | 229169.9

0.10cm 11.27 3273.70 | 6547.54 | 13095.23 | 32738.32 | 65476.82 | 196431.1 | 229169.7
0.25cm 28.19 3273.56 | 6547.35 | 13095.01 | 32738.08 | 65476.58 | 196430.9 | 229169.5
0.50 cm 56.37 3273.51 | 6547.12 | 13094.69 | 32737.71 | 65476.19 | 196430.5 | 229169.1
1.00 cm 112.74 | 3274.15 | 6547.03 | 13094.24 | 32737.04 | 65475.45 | 196429.7 | 229168.3
2.00 cm 225.48 | 3278.35 | 6548.30 | 13094.06 | 32735.98 | 65474.10 | 196428.1 | 229166.7

5.00 cm 563.71 3313.95 | 6563.76 | 13099.34 | 32735.15 | 65471.23 | 196423.9 | 229162.4
Predecisional information for planning amliscussion only. 5
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As is seen by comparing Tables 1 and 2, the navigatioiteration.
performance of the alternate GT algorithrexsctly the same The root mean squared (RMS) execution time of each
as tha which was obtained using the traditional NR position solution was recorded for each of the test cases over
algorithm. When both algorithms are presented with the santbe 10,000 navigation simulations listed in theevious
navigation node errors and receiver noise errthgy section. Tables 3 and 4 show that the NR algorithm
converge to the same position solution. This conclusion isonsistently converged within to its solution within 0.01 cm
intuitively satisfying both algorithms are working with repeatability in 6 iterations and approximately 330
exactly the same information, so they ought to achieve thmicroseconds on a standard laptop computer. The
same numerical solution. The results of Tables 1 and 2omputational cost of the NR algtimin on the test computer
validate the GT algdthm against the NR algorithm as an is about 55 microseconds per iteration. The execution times
alternate method for obtaining a navigation solution based omere obtained using the andtoc functions in Matlab on a
trilateration. laptop computer. These values are machkigpendent and
are intended for comparison purposes only between the

5. COMPUTATION PERFORMANCE COMPARISON methods.

Although both the GT and NR algorithms achieve identical
navigation solutions when provided with the same
information as seen in the previous section, the computational
method by which they obtain these results is different.
Therefore, the computational performance of the two
algorithms was compared. As was stated in 8ecij both
methods perform matrix inversions and both use iterate
procedures to converge to a solution. However, the NR
method computes its matrix inversionigtesits iterative loop,
requiring an inversion operation to be performed at every

Table 3. RMS Iteration Count of the NR Algorithm.

Traditional NR Navigation Node Error, G,
Algorithm Om 0.5m 1m 2m 5m 10 m 30 m 35m
0cm 6 6 6 6 6 6 6 6
o 0.10 cm 6 6 6 6 6 6 6 6
& 6 0.25 cm 6 6 6 6 6 6 6 6
S § 0.50 cm 6 6 6 6 6 6 6 6
25 1.00 cm 6 6 6 6 6 6 6 6
g 2.00 cm 6 6 6 6 6 6 6 6
5.00 cm 6 6 6 6 6 6 6 6
Table 4. RMS Execution Time (microsec) of the NR Algorithm.
Traditional NR Navigation Node Error, G,
Algorithm Om 0.5m 1m 2m 5m 10 m 30m 35m
0cm 330.18 | 336.21 | 329.02 | 331.08 | 331.37 | 331.25 | 330.67 | 331.43
Y 0.10cm | 331.16 | 329.47 | 331.22 | 333.19 | 331.12 | 330.13 | 330.95 | 334.07
& 6 [025cm ][ 33038 | 332.01 | 33844 | 331.06 | 331.34 | 330.84 | 331.60 [ 332.16
S § 0.50cm | 330.48 | 331.30 | 334.67 | 332.06 | 332.54 | 332.67 | 334.23 | 330.85
25 1.00cm | 329.04 | 331.25 | 331.45 | 330.46 | 332.39 | 332.33 | 330.82 | 332.53
| & 2.00cm | 331.49 | 330.84 | 332.67 | 33454 | 33520 | 330.39 | 337.95 [ 331.21
Predecisi 5.00 cm |33 503585 | 331,379 331.63 | 331.33 | 330.23 | 333.06 | 336.86










